The concept of bio-economy – Reflections on the theoretical background, goals, visions, and expectations
- Project team:
Jörissen, Juliane (Project leader), Klaus-Rainer Bräutigam, Rolf Meyer, Alexandra Pehle, Witold-Roger Poganietz, Carmen Priefer, Christine Rösch
- Start date:
2015
- End date:
2016
- Research group:
Sustainability and environment in cooperation with Energy – resources, technologies, systems
Project description
Bio-economy strives for a long-term conversion from fossil resources to an economy based on biogenic raw materials, waste, and renewable energies. According to the National Research Strategy "BioEconomy 2030" the term bio-economy covers agriculture as well as all productive sectors, including the related services which develop, produce, and process biological resources – such as plants, animals, and micro-organisms – or use them in any form. Bio-economy is seen as a tool to cope with global challenges, especially population growth, climate change, and the increasing demand for materials and energy. Partly the concept met with strong support, but partly also with considerable criticism, which is less directed to the objectives pursued, but rather to the strategies for their achievement. Such a fundamental transformation process which is associated with far-reaching changes to the prevailing production systems and product lines, affecting all societal sectors, would require a detailed analysis of the potential social, environmental, economic, and political consequences which has so far only partially been carried out. Furthermore, there are many interdependencies between ecosystems, biomass production, and the markets for food, energy, materials, and chemicals. These close interactions require an agreement on the theoretical background and the objectives of bio-economy and a prospective evaluation of the possible consequences of different utilization pathways.
Research on biomass has a long tradition at ITAS, dating back to the 1980s. The work covers a wide range of topics and issues, ranging from accompanying research to potential analyzes of agricultural and forestry resources and waste as well as algae in combination with different utilization pathways and processing technologies up to their evaluation in terms of sustainability. Furthermore, ITAS deals with opportunities and risks of emerging technologies such as genetic engineering and synthetic biology, to which an important role is attributed in the context of bio-economy (see literature).
Within the framework of the program-oriented research of the Helmholtz Association of German Research Centers, the emphasis should henceforth not only be on case studies in the field of bio-economy research but also on conceptual and theoretical work. Based on the above-mentioned criticism of the bio-economy strategy, the project deals with the genesis of the concept, the background, overarching goals and visions in various European and non-European countries. Gaps and weaknesses in the present national concept, for example in terms of the sustainability criteria used, the estimation of the available potentials, the participation of different social groups, or the implementation strategy pursued will be shown and alternatives will be discussed. The aim of this project is to undertake a critical reflection of the bio-based economy and to contribute to the theoretical substantiation of case studies by ITAS.
There are numerous intersections and synergy effects between this project and the accompanying research carried out by ITAS under the "bio-economy research program Baden-Württemberg" regarding the three pathways biogas, lignocellulose, and microalgae.
Publications
Transforming the bio-based sector towards a circular economy - What can we learn from wood cascading?
2020. Forest policy and economics, 110, Article: 101872. doi:10.1016/j.forpol.2019.01.017
Rekonstruktion von Visionen und angestrebten Transformationspfaden in Diskurs und Politik zur Bioökonomie
2018. 8. Internationale Konferenz des Netzwerks Technikfolgenabschätzung (NTA 2018), Karlsruhe, Germany, November 7–8, 2018
Limitations and barriers of the concept of a circular bioeconomy
2018. Projektmodul “Bioökonomie”, Universität Hohenheim (2018), Stuttgart, Germany, April 11, 2018
Biomasse aus der Abfallwirtschaft
2017. Bioökonomie für Einsteiger. Hrsg.: J. Pietzsch, 54–65, Springer Spektrum
Die Bedingungen einer nachhaltigen Biokonomie
2017. Bioökonomie für Einsteiger. Hrsg.: J. Pietzsch, 177–203, Springer Spektrum. doi:10.1007/978-3-662-53763-3_9
Bioökonomie – Schlüssel zu unbegrenztem Wirtschafts- und Konsumwachstum?
2017. Bioökonomie für Einsteiger. Hrsg.: J. Pietzsch, 205–211, Springer Spektrum
Die Herkunft der Biomasse
2017. Bioökonomie für Einsteiger. Hrsg.: J. Pietzsch, 11–65, Springer Spektrum. doi:10.1007/978-3-662-53763-3_2
Pathways to Shape the Bioeconomy
2017. Resources, 6 (1), 10. doi:10.3390/resources6010010
Herausforderungen für die Umsetzung der Bioökonomie und Ansatzpunkte für die Weiterentwicklung der Konzepte
2017. Bio statt Erdöl: Was ist Bioökonomie - und könnte sie die Welt retten? Podiumsgespräch, München, 7.Dezember 2017
Shaping the bioeconomy: Key issues and major lines of conflict in the current discourse
2017. 3rd European Technology Assessment Conference, Cork, IRL, May 17-19, 2017
Bioeconomy in the spotlight: TA-perspectives in a contested terain of transformation
2017. 3rd European Technology Assessment Conference, Cork, IRL, May 17-19, 2017
Energiepflanzen und Flächenkonkurrenz: Indizien und Unsicherheiten
2015. Gaia, 24 (2), 108–118. doi:10.14512/gaia.24.2.9
Systems analysis on goals, visions, value chains and implementation steps of a bio-economy in Baden-Württemberg
2015. Statusseminar des Forschungsprogramms Bioökonomie Baden-Württemberg, Stuttgart-Hohenheim, 29.Oktober 2015
The extent of food waste generation across EU-27: Different calculation methods and the reliability of their results
2014. Waste management & research, 32 (8), 683–694. doi:10.1177/0734242X14545374
Alternative fuels from forest residues for passenger cars - an assessment under German framework conditions
2014. Energy, Sustainability and Society, 4 (12), 1–13. doi:10.1186/2192-0567-4-12
Technology assessment in engineering practice: The case of bioliq® - fuel production from biomass
2013. Management systems in production engineering, 10 (2), 12–18
Synthetic genomics and synthetic biology applications between hopes and concerns
2013. Current Genomics, 14, 11–24. doi:10.2174/1389202911314010003
Ökolandbau und Bioenergie. Zielkonflikte und Chancen der Integration
2013. Ökologie und Landbau, 41 (2), 32–34
Envisioning the sustainability of the production of short rotation coppice on grassland
2013. Energy, Sustainability and Society, 3 (1), 1–17. doi:10.1186/2192-0567-3-7
Technology options for feeding 10 billion people. Options for cutting food waste - Options brief
2013. Brüssel
Grüne Gentechnik im Kontext landwirtschaftlicher Entwicklung - Reflexion gesellschaftlicher Kontroversen durch Technikfolgenabschätzung
2012. Grüne Gentechnik : Zwischen Forschungsfreiheit und Anwendungsrisiko. Hrsg.: H. Grimm, 369–386, Nomos Verlagsgesellschaft
Beiträge der Energieerzeugung mit Mikroalgen zu nachhaltiger Energieversorgung und -nutzung?
2012. Der Systemblick auf Innovation : Technikfolgenabschätzung in der Technikgestaltung. Hrsg.: M. Decker, 451–454, edition sigma
Hoffnungsträger Kurzumtriebsplantagen? Perspektiven und Herausforderungen im Überblick
2012. GAIA - Ökologische Perspektiven für Wissenschaft und Gesellschaft, 21, 194–201
Materials flow modeling of nutrient recycling in biodiesel production from microalgae
2012. Bioresource Technology, 107, 191–199. doi:10.1016/j.biortech.2011.12.016
Foresight on environmental technologies: options for the prioritisation of future research funding - lessons learned from the project ’Roadmap Environmental Technologies 2020+’
2012. Journal of Cleaner Production, 27, 32–41. doi:10.1016/j.jclepro.2011.12.038
Laiendiskurse über Grüne Gentechnik. Wahrnehmung und Perspektiven
2012. Grüne Gentechnik : Zwischen Forschungsfreiheit und Anwendungsrisiko. Ed.: H. Grimm, 175–193, Nomos Verlagsgesellschaft
Ökologischer Landbau und Bioenergieerzeugung - Zielkonflikte und Lösungsansätze. Endbericht zum TA-Projekt
2012. Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag (TAB). doi:10.5445/IR/310092068
Organic farming and bioenergy production – conflicting goals and approaches to a solution. Summary
2012. Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag (TAB). doi:10.5445/IR/1000137315
Synthetische Biologie. Verantwortungszuschreibung und Demokratie
2011. Information Philosophie, 2011 (5), 8–18
Strategien und Technologien zur Erhöhung der Rohstoffproduktivität
2010. Chemie Ingenieur Technik, 82, 1903–12. doi:10.1002/cite.201000113
Wald-Energieholzaufkommen in Baden-Württemberg. Bereitstellungskosten und Standortanalyse
2010. Allgemeine Forst- und Jagdzeitung, 181, 117–22
Treibhausgasbilanz nachwachsender Rohstoffe : eine wissenschaftliche Kurzdarstellung. (KIT Scientific Reports ; 7556)
2010. KIT Scientific Publishing. doi:10.5445/KSP/1000018699
Opportunities and challenges facing new energy crops. Summary
2010. Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag (TAB). doi:10.5445/IR/1000137880
Chancen und Herausforderungen neuer Energiepflanzen - Endbericht zum TA-Projekt
2010. Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag (TAB). doi:10.5445/IR/1000102998
Biomass-to-liquid: Hoffnungsträger für eine umweltfreundliche mobile Zukunft?
2009. DVGW Energie / Wasser-Praxis, 60 (4), 17–19
Genetically modified plants and foods: Challenges and future issues in Europe - Final Report
2009. EPTA
Sparsame und schonende Flächennutzung. Entwicklung und Steuerbarkeit des Flächenverbrauchs
2007. edition sigma